380 research outputs found

    Behavioural response of workers to repeated intergroup encounters in the harvester ant Messor barbarus

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this record.The evolution of cooperation in animal societies is often associated with the evolution of hostility towards members of other groups. It is usually predicted that groups under attack from outsiders should respond by becoming more cohesive or cooperative. However, the responses of individuals to real or simulated intergroup encounters vary widely, for reasons that are poorly understood. We tested how groups of workers of the harvester ant, Messor barbarus, responded to exposure to members of a different colony versus members of their own colony, and how previous exposure to an intruder affected the intensity of the within-group response. We found that workers increased in activity and had more contact with one another immediately following exposure to an ant from a different colony, but also showed a similar behavioural response to presentations involving an ant from their own colony. However, exposure to an intruder from a different colony resulted in much stronger behavioural responses to a second intruder, encountered shortly afterwards. Our results are consistent with studies of social vertebrates which suggest that exposure to intruders results in increased social cohesion. Our results also show that exposure to an intruder primes group members to respond more strongly to future intrusions. Our findings highlight a disconnect between the assumptions of theoretical models which study the effect of intergroup conflict on social evolution over many generations, and the short-term behavioural responses that are the usual focus of studies of intergroup conflict in insects and vertebrates.Natural Environment Research Council (NERC

    Evidence for frequent incest in a cooperatively breeding mammal.

    Get PDF
    As breeding between relatives often results in inbreeding depression, inbreeding avoidance is widespread in the animal kingdom. However, inbreeding avoidance may entail fitness costs. For example, dispersal away from relatives may reduce survival. How these conflicting selection pressures are resolved is challenging to investigate, but theoretical models predict that inbreeding should occur frequently in some systems. Despite this, few studies have found evidence of regular incest in mammals, even in social species where relatives are spatio-temporally clustered and opportunities for inbreeding frequently arise. We used genetic parentage assignments together with relatedness data to quantify inbreeding rates in a wild population of banded mongooses, a cooperatively breeding carnivore. We show that females regularly conceive to close relatives, including fathers and brothers. We suggest that the costs of inbreeding avoidance may sometimes outweigh the benefits, even in cooperatively breeding species where strong within-group incest avoidance is considered to be the norm

    Group size and visitor number predict faecal glucocorticoid concentrations in zoo meerkats

    Get PDF
    This is the author accepted manuscript. The final version is freely available from Royal Society via the DOI in this record.Measures of physiological stress in zoo animals can give important insights into how they are affected by aspects of their captive environment. We analysed the factors influencing variation in glucocorticoid metabolites in faeces (fGCs) from zoo meerkats as a proxy for blood cortisol concentration, high levels of which are associated with a stress response. Levels of fGCs in captive meerkats declined with increasing group size. Compared to data from wild meerkats, this contrasts with the patterns seen in large stabile groups but matches the pattern seen in dispersing coalitions. In the wild, very small groups of meerkats are at a higher risk of predation, while in larger groups there is increased competition for resources. Indeed, group sizes in captivity tend to be closer to those seen in unstable coalitions in the wild, which may represent a stressful condition to meerkats in captivity and predispose them to chronic stress, even in absence of natural predators. Individuals in large enclosures showed lower levels of stress, but meerkat density had no effect on the stress measures. In contrast to data from wild meerkats, neither sex, age, nor dominance status predicted physiological stress levels in captivity, which may reflect less food stress owing to more equal access to resources in captivity versus wild. Median number of visitors at the enclosure was positively correlated with fGC concentrations on the following day, with variation in the visitor numbers having the opposite effect. Our results are consistent with the hypothesis that there is an optimum group size which minimises physiological stress in meerkats, and that zoo meerkats at most risk of physiological stress are those kept in small groups and small enclosures and are exposed to consistently high numbers of visitors.Funding was provided by a European Social Fund studentship and a Society for Endocrinology grant awarded to K.S., and by NERC grant awarded to M.A.C. (NE/J010278/1)

    Unrelated Helpers in a Primitively Eusocial Wasp: Is Helping Tailored Towards Direct Fitness?

    Get PDF
    The paper wasp Polistes dominulus is unique among the social insects in that nearly one-third of co-foundresses are completely unrelated to the dominant individual whose offspring they help to rear and yet reproductive skew is high. These unrelated subordinates stand to gain direct fitness through nest inheritance, raising the question of whether their behaviour is adaptively tailored towards maximizing inheritance prospects. Unusually, in this species, a wealth of theory and empirical data allows us to predict how unrelated subordinates should behave. Based on these predictions, here we compare helping in subordinates that are unrelated or related to the dominant wasp across an extensive range of field-based behavioural contexts. We find no differences in foraging effort, defense behaviour, aggression or inheritance rank between unrelated helpers and their related counterparts. Our study provides no evidence, across a number of behavioural scenarios, that the behaviour of unrelated subordinates is adaptively modified to promote direct fitness interests

    Kin discrimination via odour in the cooperatively breeding banded mongoose

    Get PDF
    Kin discrimination is often beneficial for group-living animals as it aids in inbreeding avoidance and providing nepotistic help. In mammals, the use of olfactory cues in kin discrimination is widespread and may occur through learning the scents of individuals that are likely to be relatives, or by assessing genetic relatedness directly through assessing odour similarity (phenotype matching). We use scent presentations to investigate these possibilities in a wild population of the banded mongoose Mungos mungo, a cooperative breeder in which inbreeding risk is high and females breed communally, disrupting behavioural cues to kinship. We find that adults show heightened behavioural responses to unfamiliar (extra-group) scents than to familiar (within-group) scents. Interestingly, we found that responses to familiar odours, but not unfamiliar odours, varied with relatedness. This suggests that banded mongooses are either able to use an effective behavioural rule to identify likely relatives from within their group, or that phenotype matching is used in the context of within-group kin recognition but not extra-group kin recognition. In other cooperative breeders, familiarity is used within the group and phenotype matching may be used to identify unfamiliar kin. However, for the banded mongoose this pattern may be reversed, most likely due to their unusual breeding system which disrupts within-group behavioural cues to kinship

    Elevated aggression is associated with uncertainty in a network of dog dominance interactions

    Get PDF
    This is the author accepted manuscript. The final version is available from The Royal Society via the DOI in this record.Dominance hierarchies are widespread in animal societies and reduce the costs of within group conflict over resources and reproduction. Variation in stability across a social hierarchy may result in asymmetries in the benefits obtained from hierarchy formation. However, variation in the stability and behavioural costs of dominance interactions with rank remain poorly understood. Previous theoretical models have predicted that the intensity of dominance interactions and aggression should increase with rank, but these models typically assume high reproductive skew, and so their generality remains untested. Here we show in a pack of free-living dogs with a sex-age graded hierarchy that the central region of the hierarchy was dominated by more unstable social relationships and associated with elevated aggression. Our results reveal unavoidable costs of ascending a dominance hierarchy, run contrary to theoretical predictions for the relationship between aggression and social rank in high skew societies, and widen our understanding of how heterogeneous benefits of hierarchy formation arise in animal societies.Natural Environment Research Council (NERC

    Ecological knowledge, leadership, and the evolution of menopause in killer whales

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.There is another record in ORE for this publication: http://hdl.handle.net/10871/16488Classic life-history theory predicts that menopause should not occur because there should be no selection for survival after the cessation of reproduction [1]. Yet, human females routinely live 30 years after they have stopped reproducing [2]. Only two other species-killer whales (Orcinus orca) and short-finned pilot whales (Globicephala macrorhynchus) [3, 4]-have comparable postreproductive lifespans. In theory, menopause can evolve via inclusive fitness benefits [5, 6], but the mechanisms by which postreproductive females help their kin remain enigmatic. One hypothesis is that postreproductive females act as repositories of ecological knowledge and thereby buffer kin against environmental hardships [7, 8]. We provide the first test of this hypothesis using a unique long-term dataset on wild resident killer whales. We show three key results. First, postreproductively aged females lead groups during collective movement in salmon foraging grounds. Second, leadership by postreproductively aged females is especially prominent in difficult years when salmon abundance is low. This finding is critical because salmon abundance drives both mortality and reproductive success in resident killer whales [9, 10]. Third, females are more likely to lead their sons than they are to lead their daughters, supporting predictions of recent models [5] of the evolution of menopause based on kinship dynamics. Our results show that postreproductive females may boost the fitness of kin through the transfer of ecological knowledge. The value gained from the wisdom of elders can help explain why female resident killer whales and humans continue to live long after they have stopped reproducing.This research was funded by a Natural Environment Research Council grant (NE/K01286X/1) to D.P.C., D.W.F., and M.A.C

    Assessment during Intergroup Contests

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordResearch on how competitors assess (i.e., gather information on) fighting ability and contested resources, as well as how assessment impacts on contest processes and outcomes, has been fundamental to the field of dyadic (one-on-one) contests. Despite recent growth in studies of contests between social-living groups, there is limited understanding of assessment during these intergroup contests. We adapt current knowledge of dyadic contest assessment to the intergroup case, describing what traits of groups, group members, and resources are assessed, and how assessment is manifested in contest processes (e.g., behaviors) and outcomes. This synthesis helps to explain the role of individual heterogeneity in assessment and how groups are shaped by the selective pressure of contests.Natural Environment Research Council (NERC

    Suppressing subordinate reproduction provides benefits to dominants in cooperative societies of meerkats.

    Get PDF
    In many animal societies, a small proportion of dominant females monopolize reproduction by actively suppressing subordinates. Theory assumes that this is because subordinate reproduction depresses the fitness of dominants, yet the effect of subordinate reproduction on dominant behaviour and reproductive success has never been directly assessed. Here, we describe the consequences of experimentally preventing subordinate breeding in 12 groups of wild meerkats (Suricata suricatta) for three breeding attempts, using contraceptive injections. When subordinates are prevented from breeding, dominants are less aggressive towards subordinates and evict them less often, leading to a higher ratio of helpers to dependent pups, and increased provisioning of the dominant's pups by subordinate females. When subordinate breeding is suppressed, dominants also show improved foraging efficiency, gain more weight during pregnancy and produce heavier pups, which grow faster. These results confirm the benefits of suppression to dominants, and help explain the evolution of singular breeding in vertebrate societies

    Exploitative leaders incite intergroup warfare in a social mammal

    Get PDF
    This is the final version. Available on open access from the National Academy of Sciences via the DOI in this recordCollective conflicts among humans are widespread, though often highly destructive. A classic explanation for the prevalence of such warfare is leadership by self-serving individuals that reap the benefits of conflict while other members of society pay the costs. Here, we show that leadership of this kind can also explain the evolution of collective violence in certain animal societies. We first extend the classic Hawk-Dove model of the evolution of animal aggression to consider cases in which a subset of individuals within each group may initiate fights in which all group members become involved. We show that leadership of this kind, when combined with inequalities in the payoffs of fighting, can lead to the evolution of severe intergroup aggression, with negative consequences for population mean fitness. We test our model using long-term data from wild banded mongooses, a species characterised by frequent intergroup conflicts that have very different fitness consequences for male and female group members. The data show that aggressive encounters between groups are initiated by females, who gain fitness benefits from mating with extra-group males in the midst of battle, whereas the costs of fighting are borne chiefly by males. In line with the model predictions, the result is unusually severe levels of intergroup violence. Our findings suggest that the decoupling of leaders from the costs that they incite amplifies the destructive nature of intergroup conflict.Natural Environment Research Council (NERC
    • …
    corecore